在该项研究中,研究团队使用了去身份化电子健康记录(EHR)数据,纳入老年患者。 本研究旨在基于8种机器学习法和SHAP法,构建可解释机器学习预测模型,以评估风险因素并预测老年心合并高血压患者的住院死亡率。 √缺失数据的处理 研究中所有变量的缺失数据比例均保持在30%以下,使用K-最近邻(KNN)分类算法对缺失数据进行处理。 √变量筛选 使用LASSO法在44个变量中筛选出9个最佳预测因子,包括年龄、住院时间(LOS)、中性粒细胞(Neu)、尿素、Cl、活化部分凝血活酶时间(APTT)、白细胞(LEU)、白蛋白和HDL胆固醇。
【欢迎阅读浙中大郑老师撰写的统计科普文】 预测模型文章中,我们一般用10倍EPV原则
医学一区,IF=23.1的杂志《Blood》刊登了一篇机器学习预测模型的研究,题为:“Use of machine learning techniques to predict poor survival after hematopoietic cell transplantation for my
老郑看到一篇文章,机器学习建模建了100个,挺有意思的,是实力?还是内卷?我们一起看看! 这篇文章是中国学者发表在中科院一区,影响因子7.0的杂志《BMC Medicine》
现如今,在预测模型领域中,传统回归模型和机器学习模型应用已经十分广泛,各有优缺点。 在机器学习构建预测模型文章中,也经常出现Logistic回归。 那为什么郑老师说,如果机器学习预测模型差别不大,首推传统logistic回归呢? 借上海交通大学学者2025年5月发表的一篇文章,一起来探讨一下! 这篇
2025年5月7日,JAMA子刊《JAMA Network Open》(医学一区top,IF=10.5)发表了一项机器学习预测模型文章,题为:“Predicting Agitation Events in the Emergency Department Through Artif
传统方法,如逻辑回归,已被广泛用于识别风险因素和预测疾病概率。 很多机器学习构建预测模型的文章中,XGBoost模型优于其他模型。
Zstats交流群
联系助教
请输入助教告诉您的积分券
如果不填写积分券,将直接使用当前余额支付
请稍候,正在为您生成支付订单
请使用扫描二维码完成支付
二维码获取失败
支付二维码获取失败,请点击重新获取
请稍候,正在为您完成支付
正在使用积分券兑换,然后完成支付 正在使用当前余额完成支付
您的订单已支付完成,页面将在 秒后自动关闭
支付过程中出现错误,请重新选择支付方式